
Expanding features for CRM
systems products, part 2

C A S E S T U D Y

My main priority was to make the customer service and sales agents more efficient. After conducting

user research in which I timed their tasks with a stopwatch, results showed searching for a customer

account took 30% of the average call time. This was the most time intensive task, outside of

understanding the callers problem and finding a solution. If we could speed up this task, customer

service agents could answer more calls, and we would theoretically reduce customer hold (15 minutes)

and call times (8 minutes).

Why prioritize this feature?

Automatic Account Search

Auto account search was a new product feature to automatically find and show the customer’s account

in our CRM System when the customer service agent answered each call. Using the customer’s inbound

calling number as the string for the search query, made sense, as it was the only information accessible

before a call was answered.

What is auto account search?

While this idea may sound simple in it’s conception there were quite a few obstacles to overcome:

Not all customers would have

a phone number on file

System was setup for only

one phone number per

customer account

Customers could be calling

regarding an account with

one or more of our 11 brands

Testing and deploying

against 11 different admin

sites

No integration between the

admin site (CRM) and phone

system

Edge cases like international

phone number formats

• The first user flow was the ideal scenario, where a customer calls from the phone number on their

account, and the auto account search feature would retrieve and present the customer’s account to

the customer service agent. This required no design as the account page already existed.

• The second user flow would be triggered when the customer was calling from a phone number

associated with multiple accounts or brands. I mocked a results page with the capacity to show a

list of results based on the inbound calling number.

• The third and final user flow would be triggered if the phone number the customer was calling from

was not associated with any account across any of the 11 brands. I repurposed the results page

design to show a no results state. If this flow was triggered, the customer service agent would then

manually search for the customer’s account using a last name or email address, as done previously.

Challenges

Another consideration was not building this feature. The feature scope included integrating 2 systems

and creating a custom search algorithm across all 11 different databases, and would have user experience

implications. One option was only building this feature on our top 2 brands, but if we had to do the work

for 2 brands, the work to scale it to 11 was marginal comparatively. In the end, my team and I agreed to

build this feature for all 11 brands because the expected benefits in the end user experience and

increased customer service efficiency outweighed the implementation challenges.

Other approaches and considerations

The automatic account search feature was built in house. The majority of the heavy lifting would be on

the backend, so I created a mini PRD with user stories, interface mocks and technical specs to empower

my engineers with enough information to get started.

The solution for this new product feature was pretty straightforward from a UI/UX perspective. The

Admin sites (CRM) interface was accessed via the web browser. It was logical to open a new tab in the

end user’s default browser, with the results of the search query using the customer’s phone number. This

would happen every time a customer service agent answered a call. This approach helped overcome

most of the challenges and difficulties listed above.

There were 3 primary user (customer service agent) flows for auto account search:

The solution

Figure 3. A wireframe I created for when the customer was calling from a phone number

associated with multiple accounts

To ensure no major delays in the development of auto account search, I served as scrum master during

daily stand up, and worked closely with engineering to remove any roadblocks. I prioritized shielding the

engineers from new requests, and testing the first build on only 1 brand to keep the timeline on track. In

the QA phase of the project, I thoroughly tested the feature on the floor while answering real customer

phone calls, and prioritized all the technical and user experience bugs for resolution. After auto account

search passed QA, I advertised and trained customer service agents on how to use the new feature.

During launch week, I found a desk in the customer service department to work from, so I could answer

questions and receive real time, unfiltered feedback.

Development, QA, and launch

The goal of auto account search was to make the customer service agents more efficient by automating

one of their most time intensive tasks. I measured the results of the feature using objective, quantifiable

metrics to see how they compared to the success criteria.

• 22x improvement in account search efficiency by reducing time to find a customer’s

account from 46 seconds to 2 seconds

• 72% of inbound calls automatically presented customer information to the

customer service agent

Time to find a customer’s account

10s

0s

20s

30s

40s

50s

Q2 ‘13 Q3 ‘13 Q4 ‘13 Q1 ‘14 Q2 ‘14 Q3 ‘14

Saved time

Time to find a customer’s account Projected

Implentation
March ‘13

Figure 4. Time to find a customer’s account Figure 5. Calls per year & percent of accounts found

Measuring success

User story: “As a customer service agent I want to be able to find customer’s
accounts when they call without asking them for information, so that I can focus on
empathetic listening and problem solving.”

HOME ABOUT RESUME POSTS CONTACT C H R I S M A D I S O N

“OMG this saves me so much time”
D I A N A , C U S T O M E R S E R V I C E A G E N T

It was also important to collect some qualitative data points, as solving the problem with happy

end users was key to building trust as a new product manager in the organization. Anonymous

user surveys reported high approval ratings via a net promoter score and high ease of use ratings

via a satisfaction survey.

Phase 2 of this feature would also extend auto account search to the sales department. However, the

sales teams had other pain points that were prioritized ahead of this feature that would provide more

value for their roles (more on this in the application fulfillment section).

Phase 2 and next steps

Figure 6. Example of feature brief for deplyoing Auto Account Search to the sales department

Auto account search was a user experience and financial success for FileRight. Between auto account

search and solving the session timeout issue, the call center hold times improved 6.5x from over 15

minutes (during peak periods) to less than 1 minute. The resulting return on investment for the

organization was a reduction of at least $1,330,000 per year in call center cost of labor.

By freeing up call center agents, FileRight was exponentially closer to achieving their goal of supporting

4 million new customers. It also helped solidify the need for my new role in the organization and

garnered some political capital to help with future updates. I was ready to tackle the next feature,

onboarding new agents more quickly so the business could profitably scale to accommodate a 200%

increase in business.

Conclusion

Solving a session timeout issue

During the several hours per week I initially spent engaging with real customers via the CRM systems, I

discovered a session timeout issue that was negatively impacting customer service agents. Customer

service agents' sessions were timing out after only a few minutes while listening to and understanding a

customer's reason for calling. After agents were logged out, there was an additional 5 minute waiting

period to log back in as the server was burdened by too many simultaneous logins. Upon discovery, I

immediately made a recommendation to change the session timeout from 5 minutes to 8 hours (a typical

customer service agent shift) and increase the amount of server resources (CPU), so no login even during

peak periods took more than 2 seconds. This alone improved call center hold times during peak hours

from over 15 minutes to under 4 minutes. Solving this session timeout issue would save FileRight over

$600k per year in perpetuity.

A quick win with a big impact

C O N T I N U E T O P A R T 3 : K N O W L E D G E B A S E

C M A D I S O N . I O | C K M A D I S O N 4 @ G M A I L . C O M | 6 5 0 - 4 6 0 - 8 8 1 2

Auto account search success metrics

72%
One account
found

3%

Multiple accounts
found

25%

No accounts
found

365,000+
Calls per year

I N T R O A U T O M A T I C A C C O U N T S E A R C H K N O W L E D G E B A S E A P P L I C A T I O N F U L L F I L L M E N T O U T A G E P R O C E S S

http://cmadison.io/
http://cmadison.io/posts/fileright-case-study-outage-process.pdf
http://cmadison.io/posts/fileright-case-study-auto-account-search.pdf
http://cmadison.io/posts/fileright-case-study-knowledge-base.pdf
http://cmadison.io/posts/fileright-case-study-application-fulfillment.pdf
http://cmadison.io/posts/fileright-case-study-intro.pdf
http://cmadison.io/posts/fileright-case-study-knowledge-base.pdf
http://cmadison.io/#sectionContact
http://cmadison.io/#sectionPortfolio
http://cmadison.io/#sectionResume
http://cmadison.io/#sectionAbout
http://cmadison.io/
http://cmadison.io/posts/fileright-case-study-intro.pdf
http://cmadison.io/posts/fileright-case-study-knowledge-base.pdf
https://github.com/CMadison
mailto:ckmadison4@gmail.com
https://www.linkedin.com/in/chris-madison-a7b68737/
http://cmadison.io/
http://cmadison.io/posts/fileright-case-study-application-fulfillment.pdf

	Solving a session timeout issue

